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Abstract. A graph X is defined inductively to be (a0, . . . , an−1)-regular if X
is a0-regular and for every vertex v of X, the sphere of radius 1 around v is an
(a1, . . . , an−1)-regular graph. Such a graph X is said to be highly regular (HR)
of level n if an−1 �= 0. Chapman, Linial and Peled [Combinatorica 40 (2020),
pp. 473–509] studied HR-graphs of level 2 and provided several methods to
construct families of graphs which are expanders “globally and locally”, and
asked about the existence of HR-graphs of level 3.

In this paper we show how the theory of Coxeter groups, and abstract reg-
ular polytopes and their generalisations, can be used to construct such graphs.
Given a Coxeter system (W,S) and a subset M of S, we construct highly reg-
ular quotients of the 1-skeleton of the associated Wythoffian polytope PW,M ,
which form an infinite family of expander graphs when (W,S) is indefinite and
PW,M has finite vertex links. The regularity of the graphs in this family can
be deduced from the Coxeter diagram of (W,S). The expansion stems from
applying superapproximation to the congruence subgroups of the linear group
W .

This machinery gives a rich collection of families of HR-graphs, with various
interesting properties, and in particular answers affirmatively the question
asked by Chapman, Linial and Peled.

1. Introduction

A graph X is defined inductively to be (a0, . . . , an−1)-regular if X is a0-regular
and for every vertex v of X, the sphere of radius 1 around v is (a1, . . . , an−1)-
regular. If an−1 �= 0, we will say that X is a highly regular (HR) graph of level
n. A convenient way to visualise such a graph is to think of the n-skeleton of the
clique complex of X. This will be an n-dimensional simplicial complex, in which
the 1-skeleton of the link of every i-cell (i = 0, . . . , n− 2) is an ai+1-regular graph
on ai vertices. If additionally the 1-skeleta of all these links are connected, then we

Received by the editors October 14, 2020, and, in revised form, April 13, 2021.
2020 Mathematics Subject Classification. Primary 20F55, 05C48; Secondary 51F15, 22E40,

05C25.
Grant support: the first author by N.Z. Marsden Fund (project UOA1626), the first and

third authors by UoA (FRDF grant 3719917 ‘Geometry and symmetry’), the second author by
NSF (grant DMS-1700165) and ERC (Horizon 2020 programme, grant 692854), and the fourth
author by FNRS (CR FC 4057) and KU Leuven (PDM 19145). This material is based upon work
supported by a grant from the Institute for Advanced Study. All four authors thank the Margaret
and John Kalman Trust for the financial support of the Michael Erceg Senior Visiting Fellowship
at the University of Auckland (UoA) which the first author was awarded. The first and fourth
authors thank UoA for its hospitatility. The present work grew out of their visit at UoA.

c©2021 American Mathematical Society

325

Licensed to Hebrew University of Jerusalem. Prepared on Thu Sep  8 11:47:32 EDT 2022 for download from IP 132.64.28.27.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

https://www.ams.org/tran/
https://www.ams.org/tran/
https://doi.org/10.1090/tran/8456


326 MARSTON CONDER ET AL.

say that X is an (a0, . . . , an−1)-connected regular graph, and that X is connected
regular (HRC) of level n.

Motivated by questions related to PCP-theory, Chapman, Linial and Peled
[CLP20] initiated a systematic study of HR-graphs of level 2, that is, (a, b)-regular
graphs, with principal focus on (a, b)-regular graphs which are expanders “globally
and locally”. This means that the global graph X is an expander, but so are the
links of vertices. Of course, for families of graphs for which the degree a = a0 is
constant, this simply means that the links are connected. They provided several
methods to construct such families and raised the question whether this can be done
also for some triples (a, b, c). The goal of this paper is to show that the theory of
Coxeter groups and their associated Wythoffian polytopes leads to a rich collection
of highly regular expander graphs.

The following theorem summarises our method. All the notions in the theorem
will be explained in §3.

1.1. Theorem. Let (W,S) be a Coxeter system, M a subset of S, and PW,M the
associated Wythoffian polytope. Suppose (W,S) is indefinite, PW,M has finite vertex
links, and the 1-skeleton X of PW,M is (a0, . . . , an)-regular. Then there exists an
infinite collection of finite quotients of X by normal subgroups of W , which form a
family of (a0, . . . , an)-regular expander graphs.

Let us say right away that the level of regularity of the graphs in Theorem
1.1 is at most the rank of the Coxeter group from which they are derived, and
usually it is much smaller. Moreover, the HR-graphs provided by Theorem 1.1 are
expanders “globally”, but their links may be disconnected when those of PW,M

are. Thus Theorem 1.1 gives a general scheme to construct highly regular expander
graphs, but to apply it, one needs to findWythoffian polytopes which are sufficiently
(connected and) regular. This will be carried out in §7.

In the particular case where (W,S) is a string Coxeter system and PW = PW,M

is its universal polytope, the connected regularity of the 1-skeleton X follows from
that of PW itself by a straightforward argument (Lemma 3.3). Thus we obtain the
following corollary to Theorem 1.1.

1.2. Corollary. Let (W,S) be a string Coxeter system, and let PW be its universal
polytope. Suppose (W,S) is indefinite and PW has finite vertex links. Then there
exists an infinite collection of finite quotients of the 1-skeleton X of PW by normal
subgroups of W , which form a family of (a0, . . . , an−1)-connected regular expander
graphs, where n is the largest integer for which PW has a simplicial n-face and ai
is the size of the link of any i-face of PW (0 ≤ i ≤ n− 1).

The example with the highest level of (connected) regularity that can be con-
structed directly from Corollary 1.2 is a family of (120, 12, 5, 2)-regular expander
graphs, quotients of the 1-skeleton of the hyperbolic tessellation with diagram

5 (see §7.4). This example answers the question of Chapman, Linial and
Peled positively.

Many interesting examples of expander graphs of connected regularity levels 3
and 4 arise from Coxeter systems affiliated to the exceptional types E (see Table
7.7). For instance, using Theorem 1.1 we construct a family of (2160, 64, 21, 10)-
connected regular expander graphs as quotients of the 1-skeleton of the Wythof-

fian polytope with diagram , whose vertex links are of type E8.
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HIGHLY REGULAR EXPANDERS FROM COXETER GROUPS 327

For each m ≥ 10, we construct another remarkable family of (2m−2, (m−1)(m−2)
2 ,

2(m−3))-connected regular expanders as quotients of the polytope of type Em with

diagram . Its vertex links are (m−1)-demicubes. In fact, these families

are respectively (2160, 64, 21, 10, 5) and (2m−2, (m−1)(m−2)
2 , 2(m−3),m−3)-regular,

but the last link is disconnected.
The following theorem sums up the most interesting examples (see §7 for more).

1.3. Theorem.
(a) There are infinitely many (a0, a1, a2) ∈ N3 for which there exists an infinite

family of (a0, a1, a2)-connected regular expanders.
(b) For (a0, a1, a2, a3) ∈ {(120, 12, 5, 2), (2160, 64, 21, 10)}, there exists an infinite

family of (a0, a1, a2, a3)-connected regular expanders.
(c) For each m ≥ 5, there exists an infinite family of (

(
2m
m

)
,m2, 2(m − 1),m −

2,m− 3, . . . , 1)-regular expander graphs, for which the spheres around i-cliques
are connected for 0 ≤ i ≤ m, i �= 3. The sphere around a triangle is a disjoint
union of two complete graphs on m vertices.

To obtain the arbitrarily high levels of regularity promised in Theorem 1.3(c), it
is necessary to consider general Wythoffian polytopes (not just the regular ones).

The Wythoffian polytopes Pm we construct to this end are associated, for any

m ≥ 5, with the diagram
m− 1 m− 1

(obtained by extending the A2m−1 di-
agram in its middle by an edge labeled 3 and circling the added vertex). The
1-skeleton Xm of Pm is a (

(
2m
m

)
,m2, 2(m − 1),m − 2,m − 3, . . . , 1)-regular graph,

that is, has regularity level m + 1. The link of any vertex in Pm is an m-rectified

(2m − 1)-simplex, with diagram
m− 1 m− 1

, and the 1-skeleton of this link
(which is also the sphere of radius 1 around any vertex in Xm) is the Johnson
graph J(2m,m). The associated Coxeter system is indefinite because m ≥ 5, hence
Theorem 1.3(c) follows from applying Theorem 1.1 to Pm.

It should be pointed out that in order to obtain highly regular expanders from
Theorem 1.1, the Wythoffian polytope needs to be chosen very carefully: low-
dimensional faces need to be simplices, the link of a vertex needs to be highly
regular and finite, while the associated Coxeter system must be indefinite. The fact
that these conditions are difficult to satisfy simultaneously makes the polytopes
described above (and in §7) very special.

Another point deserves attention: the clique complexes of the quotient graphs
obtained through Theorem 1.1 are not quotients of PW,M itself, but rather of the
subcomplex of PW,M consisting of its simplicial faces. This is particularly apparent
for the polytope Pm described above (which, for m ≥ 3, has 4-faces which are not
simplices yet is regular of level ≥ 4), and further reflects the subtlety of finding
highly regular polytopes to which one can apply Theorem 1.1.

While the regularity of the 1-skeleton X is obtained from the geometry of PW,M ,
proving that the quotient graphs are expander graphs requires arguments of a com-
pletely different nature. To this end, we use the fact that Coxeter groups are linear,
and when (W,S) is indefinite, that they are not virtually solvable. To such linear
groups, one may apply the recent superapproximation results (cf. [Sal17,Sal19]). Su-
perapproximation means that the quotients of the Cayley graph of (W,S) modulo
congruence subgroups are expanders. These quotients are not highly regular graphs,
but they are quasi-isometric to highly regular quotients of X (see Lemma 4.2), from
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328 MARSTON CONDER ET AL.

which we deduce (in Proposition 4.8) that the latter are also expanders. Along the
way, we use Proposition 4.8 to deduce an interesting corollary on high-dimensional
expanders which may be of independent interest.

1.4. Outline. After a short prologue (§2) on expansion, regularity and connectivity
of graphs, we begin §3 by recalling some basic notions concerning (abstract) poly-
topes (§3.1). We then discuss the regularity of the 1-skeleta of polytopes (Lemma
3.3), before giving a brief introduction to Coxeter systems (§3.4), their geometric
representation (§3.6) and the Wythoffian polytopes associated with them (§3.7).

In §4, we use the Coxeter complex (§4.1) to prove that the Cayley graph of
(W,S) and the 1-skeleton X of the associated polytope P are quasi-isometric when
P has finite vertex links (Lemma 4.2). We show how this quasi-isometry and the
regularity of P can be preserved when passing to finite quotients of X (§4.4 and
§4.5), and prove that the expansion of these quotients amounts to the expansion of
the corresponding quotients of the Cayley graph (Proposition 4.8).

In §5 we invoke the theorem of [Bd04] (Theorem 5.1) determining the Zariski
closure of a Coxeter group in its geometric representation, to allow us to apply
superapproximation [Sal19] (Theorem 5.2) to indefinite Coxeter groups. As an
aside, we mention an interesting corollary (5.3) of the superapproximation theorem,
of independent interest. With this at hand, we conclude the proof of Theorem 1.1
in §5.4.

In §6, we present a quick application of Proposition 4.8 to high-dimensional
expanders, of independent interest. We also interpret part of our results in the
context of Garland theory.

In §7 we discuss highly regular hyperbolic tessellations. We begin with regular
tessellations (§7.1), record the relevant ones in Table 7.2, and explain why the list
is so short in Remark 7.3. We describe the most noteworthy example, the order-5
4-simplex honeycomb, in §7.4. We then explain how to find highly regular graphs
among tessellations of hyperbolic space by Wythoffian polytopes (§7.6). We again
record the most relevant examples (Table 7.7), and add one with arbitrarily high
(but not connected) regularity in §7.9.

In §8, we use two standard graph product constructions to obtain infinitely
many graphs of regularity level n from a given one. The Cheeger-Buser inequalities
guarantee that also the expansion property will be preserved (see Lemma 8.4). We
discuss some obvious restrictions on regularity parameters in §8.6 and explain why
finding good necessary and sufficient conditions on these parameters is a difficult
problem. Finally, we state two open problems on the subject.

We conclude the paper with a tribute to John Conway and Ernest Vinberg (§9).

1.5. Remark. While writing this paper, we learned that in a work in preparation
[FI20], Friedgut and Iluz develop a very different method to produce expanders of
arbitrarily high connected regularity level; see §8.8 for more details.

2. Expansion, regularity and connectivity

2.1. Expander graphs. A finite graph X is said to be ε-expanding, or an ε-
expander, if its Cheeger constant

h(X) = min
∅�V�X

|∂V |
min (|V |, |X \ V |)
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HIGHLY REGULAR EXPANDERS FROM COXETER GROUPS 329

is at least ε. Here ∂V denotes the edge-boundary of a set V of vertices of X. Of
course, any non-trivial finite connected graph X is a 2

|X| -expander, and a complete

graph of any size is a 1-expander. The relevance of this notion appears when one
can bound the Cheeger constant from below independently of the size of the graph,
while keeping the degree under control. A family X of graphs is thus called a family
of (ε-)expanders (of degree a) if there exists ε > 0 and a ∈ N such that each graph
X ∈ X has maximum degree at most a and Cheeger constant h(X) ≥ ε. We refer
the reader to the survey [HLW06] of Hoory, Linial and Wigderson for the history,
theory and applications of expander graphs.

2.2. Higher regularity. Let X be a graph, and V a set of vertices of X. (Our
notation will not distinguish the graph X and its underlying vertex set; the meaning
should be clear from the context.) We define SX(V ) as the sphere of radius 1
around V in X, that is, the full subgraph of X induced by the set of vertices
{x ∈ X \ V | x is adjacent to every vertex of V }. If V = {v} consists of a single
vertex v, then we also write this as SX(v), denoting the (punctured) neighbourhood
of v in X in this case. Now, let a0, . . . , an be cardinals. Inductively, a graph X is
called (a0, . . . , an)-regular if X is an a0-regular graph and SX(v) is an (a1, . . . , an)-
regular graph for every vertex v of X. We call ai the ith regularity degree, and the
largest integer n+ 1 for which X is (a0, . . . , an)-regular with an �= 0 will be called
the regularity level of X.

Equivalently, X is (a0, . . . , an)-regular if for each i ∈ {0, 1, . . . , n}, either there is
no clique of size i+2 in X and ai = 0, or otherwise for every clique C of size i in X,
the subgraph SX(C) is ai-regular. (By convention, the empty graph ∅ is 0-regular,
but not d-regular for any d ≥ 1, and SX(∅) = X.) Next, the clique complex Xcl

of a graph X is the simplicial complex whose (i − 1)-simplices are the cliques of
size i in X (i ∈ N), with incidence between simplices being given by containment
between the corresponding cliques in X. The graph X identifies naturally with the
1-skeleton of Xcl (that is, the graph consisting of all vertices and edges of Xcl).
Thus X is an (a0, . . . , an)-regular graph if and only if its clique complex Xcl has
the following regularity property: for 0 ≤ i ≤ n, every i-simplex of Xcl is contained
in exactly ai (i+ 1)-simplices; or equivalently (when n ≥ 1): for 0 ≤ i ≤ n− 1, the
1-skeleton of the link of any i-simplex of Xcl is an ai+1-regular graph on ai vertices.

2.3. Connected regularity. In order for a regular graph to have not only
global but also local expansion, the links must remain connected. So in a given
(a0, . . . , an)-regular graph X, if for 0 ≤ i ≤ n the sphere around every i-clique
(or equivalently, the link of every (i − 1)-simplex in Xcl) is connected, we call X
(a0, . . . , an)-connected regular. (In particular, X itself should be connected.) When
there is no need to specify the regularity degrees, we say that X has connected
regularity level n+ 1, or in short that X is HRC of level n+ 1.

3. Polytopes and their groups of symmetry

3.1. Basics on polytopes. We begin by recalling (some of) the basic definitions
concerning abstract polytopes following [MS02]. For more on polytopes, reflection
groups and an explanation of the terminology used in what follows, we refer the
reader to [Cox48], [MS02] and [Bou07].
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330 MARSTON CONDER ET AL.

An abstract polytope P of (finite) rank n is a poset, whose elements are called
faces, satisfying properties (P1)–(P4) below. Two faces F , G of P are called incident
if F ≤ G or G ≤ F .

(P1) P contains a least face F−1 and a greatest face Fn (the improper faces).
(P2) Each flag (each totally ordered subset of P of maximal length) has length

n+ 1, that is, contains exactly n+ 2 faces including F−1 and Fn.

For any two faces F and G with F ≤ G, we call the poset G/F := {H ∈ P |
F ≤ H ≤ G} a section of P. We will often identify a face F of P with the section
F/F−1. The section Fn/F is called the link of the face F . If the rank of F/F−1 is i,
then F is called an i-face. It is customary to call 0-faces, 1-faces and (n− 1)-faces
of P respectively vertices, edges and facets.

A poset P satisfying (P1) and (P2) is said to be connected if either n ≤ 1, or
n ≥ 2 and for any two proper faces F , G there exists a finite sequence of proper
faces F = H0, H1, . . . , Hk = G such that Hi−1 and Hi are incident for i = 1, . . . , k.

(P3) Every section of P is connected.

Given a poset P with properties (P1) and (P2), two flags of P are called adjacent
if they differ in exactly one face. Then P is called flag-connected if any two distinct
flags Φ and Ψ of P can be joined by a sequence of flags Φ = Φ0,Φ1, . . . ,Φk−1,Φk =
Ψ such that Φj−1 and Φj are adjacent for j = 1, . . . , k. If a poset P satisfies
(P1) and (P2), then (P3) is equivalent to the a priori stronger condition that every
section of P is flag-connected.

The final requirement associates abstract polytopes more closely with traditional
polytopes.

(P4) For each i ∈ {0, . . . , n−1}, if F and G are incident faces of P of ranks i−1
and i+1 respectively, then there are precisely two i-faces H of P such that
F < H < G.

It is an easy exercise to check that sections (in particular, faces and links) of abstract
polytopes are again abstract polytopes.

3.2. Remark. In this paper, we manipulate three different kind of links, in three
different classes of objects: spheres around cliques in a graph, (simplicial) links
around simplices in a simplicial complex, and (polytopal) links around faces in a
polytope. Even though the first two notions agree when the simplicial complex in
question is the clique complex of a graph (cf. §2.2), and the last two agree up to a
certain rank in a polytope with only simplicial faces up to that rank (as we will use
in the proof of Lemma 3.3), they differ in general. For instance, when a polytope
P has a 2-face F which is not a triangle, the sphere in the 1-skeleton of P around
a vertex v of F is a proper spanning subgraph of the 1-skeleton of the (polytopal)
link of v in P. Thus care has to be taken when discussing links, and the context
should make clear which notion of link is involved. This is particularly relevant for
the second half of §7, where non-regular polytopes are considered.

Next, we prove an easy lemma that gives the regularity of the 1-skeleton of
(sufficiently) regular polytopes, and then recall some basic facts about Coxeter
groups and their associated polytopes.

3.3. Lemma. Let P be an abstract polytope, and let X denote the 1-skeleton of P
(the graph consisting of the vertices and edges of P). Let k be the largest integer for
which P has a k-face which is a simplex, and suppose that AutP acts transitively
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HIGHLY REGULAR EXPANDERS FROM COXETER GROUPS 331

on the i-faces of P for 0 ≤ i ≤ n. Then X is a (a0, . . . , amin(k,n))-regular graph,
where ai is the number of simplicial (i + 1)-faces containing a given i-face of P.
Moreover, X is (a0, . . . , amin(k,n)−1)-connected regular.

Proof. Set k′ = min(k, n). By assumption, all k′-faces of P are simplices, and
the k′-skeleton of P (the poset consisting of the k′-faces of P and their subfaces)
is a simplicial complex. This simplicial complex coincides with the k′-skeleton
of the clique complex Xcl of X. Indeed, if an i-face of P is a simplex, then its
vertices obviously form a clique in X. Conversely, for i ≤ k′, the hull of any clique
{x0, . . . , xi} in X is an i-face of P, which is necessarily the simplex with vertex set
{x0, . . . , xi}.

Using this observation and the transitivity assumption again, we deduce that
AutP acts transitively on the set of i-simplices of Xcl for 0 ≤ i ≤ k′. Hence, for
0 ≤ i ≤ k′, the number ai of (i + 1)-simplices of Xcl containing a given i-simplex
is independent of the choice of the latter. The first part of the lemma thus follows
from the discussion in §2.2, after noting that ai equals the number of simplicial
(i+ 1)-faces containing any i-face of P.

Finally, connectivity of the links of (i−1)-faces when all (i+1)-faces are simplicial
(that is, when i ≤ min(k, n) − 1) follows from the flag connectivity of P (see
§3.1). �

Lemma 3.3 obviously applies to regular polytopes (whose automorphism group
acts transitively on all flags) and to chiral polytopes (which are maximally symmetric
by rotations, but admit no reflections). If P is regular, n can be taken to be the
rank of P, so that min(k, n) = k. Moreover, ak = 0 and ak−1 ≥ 1 by definition of
k. If P is chiral, then n can be taken to be the rank of P minus 1, so that again
min(k, n) = k.

3.4. Coxeter systems. Let (W,S) be a (finitely generated) Coxeter system. Recall
that this means that S is a finite set, and W is the group with presentation

W = 〈S | (st)mst = 1 for all s, t ∈ S 〉,
where mst ∈ {1, 2, . . . ,∞} for all s, t ∈ S, and satisfy mst = 1 if and only if s = t.
(It is understood that the relation (st)mst = 1 is omitted when mst = ∞.) The
|S| × |S| matrix (mst) is called the Coxeter matrix of (W,S). The Coxeter diagram
of (W,S) is the diagram consisting of |S| vertices indexed by members of S, with
two vertices s and t connected by an edge labelled mst if mst ≥ 3 (although the
labels ‘3’ are usually omitted). A group W is called a Coxeter group if it has a set
of generators S for which (W,S) forms a (finitely generated) Coxeter system.

A Coxeter system whose unlabelled diagram is a simple path is called a string
Coxeter system, or said to be of string type. In that case, we will always assume
that the elements of S are indexed s0, . . . , sn−1 so that the edges of the diagram
join si−1 to si for 1 ≤ i ≤ n− 1, and the Coxeter matrix is usually abbreviated by
its superdiagonal entries [m0,1, . . . ,mn−2,n−1].

Tits [Tit61] showed how one can associate with every string Coxeter system
(W,S) endowed with one of the two possible indexations just described a regu-
lar polytope PW whose automorphism group is W . This polytope is called the
universal polytope for (W,S), and is often denoted directly by its Schläfli sym-
bol {m0,1, . . . ,mn−2,n−1}, because any other polytope with the same symbol is a
quotient of PW (see [MS02, Ch. 3D]).
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332 MARSTON CONDER ET AL.

3.5. Remark. When P is a universal n-polytope, the values of a0, . . . , ak from
Lemma 3.3 can be deduced from the Schläfli symbol {p1, . . . , pn−1} of P as fol-
lows. Let F be a i-face of P, and let L be the link of F in P. The Schläfli symbol
of F is then {p1, . . . , pi−1}, while that of L is {pi+2, . . . , pn−1}. The integer k de-
fined above coincides with the smallest index j for which pj �= 3 (with k = n if
p1 = · · · = pn−1 = 3). For 0 ≤ i ≤ k − 1, the cardinal ai is the number of vertices
in the universal polytope with symbol {pi+2, . . . , pn−1}, and ak = 0.

3.6. The geometric representation of a Coxeter group. Let (W,S) be a
Coxeter system, and let B be the bilinear form on V = RS given with respect to
the canonical basis {es : s ∈ S} by setting

B(es, et) = − cos(π/mst) for all s, t ∈ S.

The geometric representation of W on V is defined by

s(v) = v − 2B(v, es)es for all v ∈ V, s ∈ S.

It is a classical theorem of Tits that this representation is faithful. In fact, the dual
space V ∗ has a convex W -invariant cone, called the Tits cone, which can be used to
construct a geometric model for W and a realisation of the associated Wythoffian
polytopes, as we will discuss next.

The image of W under the geometric representation defined above (which we will
identify with W ) preserves the bilinear form B, and hence lies in the orthogonal
group OB. The signature of (W,S) is defined to be the signature of B; accordingly,
we call (W,S) definite, semidefinite or indefinite when B has the corresponding
property. It is well known that W is finite if and only if (W,S) is (positive) definite.

3.7. Wythoffian polytopes. Recall that with a Coxeter system (W,S) and a dis-
tinguished subset M of S (usually circled on the Coxeter diagram of (W,S), making
it an adorned Coxeter diagram), Wythoff’s kaleidoscopic construction associates an
abstract polytope PW,M in roughly the following way. In the Tits cone of (W,S),
place a point x0 on the intersection of the walls associated with S \M (the inactive
mirrors of the kaleidoscope), equidistantly from the walls associated with M (the
active mirrors). The vertices of PW,M are the images of x0 under W . The point
x0 is connected by an edge to each of its reflections under S (or equivalently, M);
and the edges of PW,M are the images of those edges under W . More generally, the
images of x0 under any standard parabolic subgroup of W form a standard face
of PW,M , and arbitrary faces are obtained as images of standard faces under W .
Incidence between two standard faces amounts to containment between the small-
est standard parabolic subgroups corresponding to these faces (see below), and this
incidence relation is propagated to PW,M by the action of W .

Any polytope arising from this kaleidoscopic construction is called Wythoffian.
When (W,S) is a string Coxeter system and M = {s0}, then one obtains the
universal polytope for (W,S).

The formalism of adorned Coxeter diagrams is very convenient to explore the
geometry of a Wythoffian polytope PW,M . Indeed, the shape of faces and links in
PW,M can be read directly from the adorned diagram Δ. The different faces of PW,M

are also Wythoffian polytopes, whose adorned diagrams are all obtained through the
following recipe. Remove from Δ any subset R of vertices (not containing M), and
let ΔR be the union of the connected components of the resulting diagram which
intersect M , with the vertices of M remaining circled. Then ΔR is the adorned
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diagram of (any image of) the standard face corresponding to the standard parabolic
subgroup generated by the vertices of ΔR (seen as vertices of Δ). In particular,
the rank of this parabolic subgroup coincides with the rank of the corresponding
face. Although it works in greater generality, for our purposes we will restrict the
discussion of the link to connected Coxeter diagrams Δ adorned with only one circle
(that is, (W,S) is irreducible and M is a singleton). In this setting, the link of any
vertex of PW,M is again a Wythoffian polytope, whose adorned diagram is obtained
by removing M and all edges connecting it from Δ, and circling all vertices of this
new diagram Δ \M that were previously connected to M .

Recall that an abstract polytope P is recursively called uniform if AutP acts
transitively on the vertices of P, and every facet of P is uniform. The discussion
above shows why Wythoffian polytopes are uniform: their automorphism group acts
transitively on vertices by construction, and their faces are all Wythoffian, hence
uniform by induction on the rank. However, Wythoffian polytopes are generally
not regular. Not all uniform polytopes are Wythoffian; a nice example of a non-
Wythoffian uniform polytope is the ‘grand antiprism’, discovered by Conway and
Guy in 1965 [CG65]. It is unknown in general what fraction of the uniform polytopes
the Wythoffian polytopes account for.

Wythoff’s kaleidoscopic construction was first described in these terms by Cox-
eter, in a series of papers [Cox34, Cox40, Cox85]. Unfortunately, the authors are
not aware of any modern, textbook treatment of this material (except [MS02] in
the special case of string Coxeter systems).

We conclude this subsection with a concrete example. For the remainder of this
paragraph, let (W,S) be the semidefinite Coxeter system with adorned diagram
4 4 , label its vertices {s0, . . . , s3} from left to right (so that M = {s1}), and
let PW,M be the associated Wythoffian polytope. The link of a vertex in PW,M has

diagram 4 , hence is the product of an edge ( ) and a square ( 4 ); in other
words, it is a square prism. The proper faces of PW,M can be listed following the
recipe above, by removing in turn s0, s3, s2, {s0, s3}, and {s0, s2} from the diagram.

The resulting possibilities are respectively an octahedron ( 4 ), a cuboctahedron

( 4 ), a square ( 4 ), a triangle ( ), and with no surprise, an edge ( ). With
this information, it is not unreasonable to guess that the polytope PW,M is indeed
the rectified cubic euclidean honeycomb.

4. From the Cayley graph of (W,S) to an associated

Wythoffian polytope

In this section, we compare the Cayley graph and any Wythoffian polytope
PW,M associated with a Coxeter system (W,S), with the aim of constructing highly
regular finite quotients of PW,M when PW,M has finite vertex links, which can be
made arbitrarily large if W is infinite.

4.1. Comparing graphs. Let (W,S) be a Coxeter system and M a subset of S.
The appropriate space in which to study Cay(W,S) and PW,M simultaneously is
the Coxeter complex C of (W,S). Recall that C is a chamber complex on which W
acts simply-transitively chamber-wise (see [Bou07, Ch. V]). Hence Cay(W,S) can
(and will) be identified with the set of chambers of C, with two distinct chambers
being adjacent in Cay(W,S) if they share a wall. The chamber complex C can be
realised geometrically as the complex determined by the walls of (W,S) in the Tits
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cone, and we will identify both C and PW,M with their geometric realisations inside
the Tits cone.

The sets of walls and vertices of C can be partitioned into types: a wall is of type
t if its reflection is conjugate to the element t ∈ S, while a vertex v is of type t if it
lies on no wall of type t. A chamber in C is delimited by one wall of each type, and
contains one vertex of each type. The set of chambers containing a given vertex v of
type t is in a bijective correspondence with Wt = 〈S \ {t}〉. More generally, the set
of chambers of C containing a given vertex v of PW,M is in bijective correspondence
with the stabilizer Wv of v in W . Note that Wv is the conjugate of the standard
parabolic subgroup WM = 〈S \M〉 by any element of W which brings the standard
vertex x0 of PW,M to v.

When M = {s} consists of a single element (in particular, when PW,M is the
universal polytope of a string Coxeter system), the vertices of PW,M are identified
with the vertices in C of type s by construction. If |M | ≥ 2, the vertices of PW,M

are not vertices of C, because they do not lie on any hyperplane whose type belongs
to M . Regardless of the size of M , two distinct vertices v and v′ of PW,M are
connected by an edge if and only if there are two neighbouring chambers of C
containing v and v′ respectively.

4.2. Lemma. Let (W,S) be Coxeter system and M a subset of S. The 1-skeleton
X of the associated Wythoffian polytope PW,M and the Cayley graph Cay(W,S) are
quasi-isometric if and only if PW,M has finite vertex links. In this case, the natural
W -equivariant surjection f : Cay(W,S) → X that sends a chamber to the unique
vertex of PW,M it contains is a nonexpansive quasi-isometry.

Proof. Let dS (resp. dX) denote the geodesic distance in the graph Cay(W,S)
(resp. X). The map f defined above is clearly W -equivariant and surjective. The
preimage under f of a vertex v of PW,M is the set of chambers in C containing v,
which forms a convex chamber subcomplex of C (the link of v in C).

Suppose that PW,M has finite vertex links and pick a vertex v ∈ PW,M . If C is
chamber of C containing v, then v is connected by an edge of PW,M to its reflection
v′ through any wall of C not containing v. As a consequence, the set f−1(v) of
chambers containing v must be a finite convex chamber subcomplex of C. Let D
denote its diameter (measured with dS); then D coincides with the length of the
longest word in the finite Coxeter group Wv

∼= 〈S \M〉 (with respect to S \M). If
γ is a geodesic in Cay(W,S), then f(γ) is a walk in X (possibly with repetitions).
Hence for any w,w′ ∈ W , we know that

dX(f(w), f(w′)) ≤ dS(w,w
′).

On the other hand, let (v0, . . . , vn) be a geodesic in X connecting v0 = f(w) to
vn = f(w′). Let C0 and C ′

n be the chambers of C corresponding to w and w′

respectively, and let C ′
i and Ci+1 denote the adjacent chambers of C that contain vi

and vi+1 respectively. Then for each 0 ≤ i ≤ n, there is a path γi of length at most
D connecting Ci to C ′

i in the link (in C) of vi. Concatenating the paths γ0, . . . , γn,
we see that

dS(w,w
′) ≤ (D + 1) · dX(f(w), f(w′)) +D,

which proves the first implication.
For the converse, it suffices to note that if PW,M has infinite vertex links, then

the neighbourhood of a vertex in X is infinite, while on the other hand, balls of
finite radius in Cay(W,S) are finite. �
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4.3. Remark. Using similar arguments, one can show that the 1-skeleton of the
Coxeter complex C of a (finitely generated) Coxeter system (W,S) is quasi-isometric
to Cay(W,S) if and only if (W,S) is barely infinite, that is, every proper parabolic
subgroup of W is finite. Unfortunately, the 1-skeleton of a Coxeter complex is
seldom a regular graph.

4.4. Comparing quotients. For the remainder of this section, (W,S) will be a
Coxeter system and M a subset of S such that the associated Wythoffian polytope
PW,M has finite vertex links. As before, X denotes the 1-skeleton of PW,M . Let N
be a normal subgroup of W and πN denote the quotient map W → W/N .

Note that the quotient graph Cay(W,S)/N is naturally isomorphic to the Cayley
graph Cay(πN (W ), πN(S)). Hence the quasi-isometry f arising from Lemma 4.2 in-
duces a mapping fN defined by the following commuting diagram of W -equivariant
surjections.

Cay(W,S) X

Cay(πN (W ), πN (S)) X/N

f

πN

fN

Since geodesics in Cay(πN (W ), πN (S)) and X/N can be lifted to geodesics in
Cay(W,S) and X respectively, the proof of Lemma 4.2 shows that fN is a quasi-
isometry with the same quasi-isometry constants as f (and in particular, these do
not depend on N).

4.5. Comparing regularity. In order to ensure that the graph X/N retains the
regularity of X, it suffices that the quotient map X → X/N is injective on the
neighbourhood of any vertex of X and creates no new triangles. (Note that the
graph X/N is always regular: W/N acts transitively on X/N because W does so
on the vertices of PW,M . In fact, X/N is even arc-transitive when |M | = 1, since
W acts transitively on pairs of adjacent vertices of PW,M in this case. What is at
stake here is the higher regularity, stemming for example from Lemma 3.3.) In turn,
because N acts on X by graph automorphisms, this can be achieved by requiring
that the action of N on X has minimal displacement at least 4. In view of Lemma
4.2, this would follow if the action of N on Cay(W,S) had minimal displacement at
least 4(D + 1) +D, or in other words, if every nontrivial element in N had length
at least 5D + 4. The elements in W whose lengths are less than 5D + 4 form a
finite set T .

Because W is a finitely generated linear group, it is residually finite by a classical
theorem of Malcev [Mal40]. Accordingly, let {Nm}m∈I be a collection of finite-index
normal subgroups of W which is closed under intersection and satisfies

⋂
m∈I Nm =

{1}. Let I ′ = {m ∈ I | T ∩ Nm = {1}}, so that {Nm}m∈I′ is again closed under
intersection and satisfies

⋂
m∈I′ Nm = {1}. By the previous paragraph, for m ∈ I ′

the graph X/Nm has the same regularity as X. Note that if W is infinite then the
indices of the subgroups Nm are necessarily unbounded, because finitely generated
groups only have finitely many subgroups of a given finite index.

In summary, we have so far proved the following.

4.6. Proposition. Let (W,S) be a non-definite Coxeter system and M a subset
of S, such that the Wythoffian polytope PW,M has finite vertex links. Let X be
the 1-skeleton of PW,M and let (a0, . . . , an) be the regularity of X (in the sense of

Licensed to Hebrew University of Jerusalem. Prepared on Thu Sep  8 11:47:32 EDT 2022 for download from IP 132.64.28.27.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



336 MARSTON CONDER ET AL.

§2.2). Given any collection {Nm}m∈I of finite-index normal subgroups of W closed
under intersection and satisfying

⋂
m∈I Nm = {1}, there exists I ′ ⊂ I with the same

properties, such that for m ∈ I ′ the quotient graphs X/Nm are (a0, . . . , an)-regular
and have unbounded sizes.

4.7. Comparing expansion. It remains to determine when the collection
{X/Nm}m∈I forms a family of expanders. Let πm and fm denote the maps con-
structed in §4.4 for the subgroup N = Nm. The following well-known proposition,
applied to fm, indicates that to this end it is equivalent to investigate when the
Cayley graphs Cay(πm(W ), πm(S)) form a family of expanders. This will be the
subject of §5.

Recall that a map f from a metric space (X, dX) to a metric space (Y, dY ) is
called a quasi-isometry if there exist constants A ≥ 1, B ≥ 0, C ≥ 0 such that the
following two conditions hold:

(i) ∀x, x′ ∈ X : A−1dX(x, x′)−A−1B ≤ dY (f(x), f(x
′) ≤ AdX(x, x′) +B,

(ii) ∀y ∈ Y : ∃x ∈ X : dY (y, f(x)) ≤ C.

Note that one can always weaken the conditions to A = B = C =: D, and in this
case call f a D-quasi-isometry. When there is a quasi-isometry f : X → Y , we say
that (X, dX) and (Y, dY ) are quasi-isometric. It is an easy exercise to show that
when f : X → Y is a quasi-isometry, there exists a quasi-inverse to f , that is, a
quasi-isometry g : Y → X with constants depending only on those of f , and for
which f ◦g and g ◦f have displacement bounded by the quasi-isometry constants of
f . As a consequence, quasi-isometry defines an equivalence relation between metric
spaces.

4.8. Proposition. Let D ≥ 1 and let f : Y → Z be a D-quasi-isometry between two
finite connected graphs Y and Z. Then there exist constants c, c′ > 0 depending only
on the quasi-isometry constants of f (or equivalently, on D) and on the maximum
degrees of Y and Z, such that if h(Y ) ≥ ε, then h(Z) ≥ min(cε, c′).

Proof. Let aY and aZ be the maximum degrees of Y and Z. Let c1, c3 ≥ 1 and
c2, c4 ≥ 0 be such that

c−1
1 dY (y, y

′)− c−1
1 c2 ≤ dZ(f(y), f(y

′)) ≤ c3dY (y, y
′) + c4 for all y, y′ ∈ Y,

and let c5 be such that every vertex of Z lies at distance at most c5 from f(Y ).
Note that there exists c6 (depending only on c2 and aY ) such that |f−1(z)| ≤ c6
for any z ∈ Z.

Set r = (4ac5Z )−1 (noting that r ≤ 1
4 ). Pick V ⊂ Z such that 0 < |V | ≤ 1

2 |Z|.
We distinguish three cases.

First, suppose |f(Y ) \ V | ≤ r|f(Y )|. Then no more than ac5Z |f(Y ) \ V | ≤
rac5Z |Z| = 1

4 |Z| vertices lie at distance at most c5 from f(Y ) \ V . The remain-

ing 3
4 |Z| or more vertices must then lie at distance at most c5 from f(Y )∩ V , with

at least 1
4 |Z| of them lying outside V . At the same time, the paths of length c5

leaving V via a given edge of ∂V cannot reach more than ac5−1
Z vertices altogether.

As a consequence, at least (4ac5−1
Z )−1|Z| edges must be leaving V , which shows

that |∂V |/|V | ≥ (2ac5−1
Z )−1.

Second, suppose |f(Y ) ∩ V | ≤ 2r|V |. Then no more than ac5Z |f(Y ) ∩ V | ≤
2rac5Z |V | = 1

2 |V | vertices lie at distance at most c5 from f(Y )∩V , so the remaining
1
2 |V | or more vertices of V must lie at distance at most c5 from f(Y )\V . As above,
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this implies that at least (2ac5−1
Z )−1|V | edges are leaving V , which again shows that

|∂V |/|V | ≥ (2ac5−1
Z )−1.

Third and foremost, suppose 2r|V | ≤ |f(Y ) ∩ V | ≤ (1− r)|f(Y )|. Then

|f−1(V )| ≥ 2r|V | and |f−1(Z \ V )| ≥ |f(Y ) \ V | ≥ r|f(Y )| ≥ 2r2

1− r
|V |.

As h(Y ) ≥ ε, this implies that

|∂f−1(V )| ≥ εmin(|f−1(V )|, |f−1(Z \ V )|) ≥ c−1
7 ε|V |,

where c7 = 1−r
2r2 . Hence there are at least a−1

Y c−1
7 ε|V | vertices of Y connected to but

not lying in f−1(V ). Their images under f form a set of at least (aY c6c7)
−1ε|V | ver-

tices of Z, lying outside of V at distance at most c3+ c4 from V . As a consequence,
at least (aY a

c3+c4−1
Z c6c7)

−1ε|V | edges are leaving V . �
4.9. Remark. If f happens to be surjective (as is the case in our setting), the proof
of Proposition 4.8 simplifies considerably. The first two cases are irrelevant, and in
the third case, one easily obtains h(Z) ≥ (aY a

c3+c4−1
Z c6)

−1ε by using the fact that
|f−1(Z \ V )| ≥ |V |.

With the existence of quasi-inverses in mind, the following is an immediate corol-
lary to Proposition 4.8.

4.10. Corollary. Let {Ym}m∈J and {Zm}m∈J be two families of graphs of bounded
maximum degree, indexed by a set J . Suppose that there is a quasi-isometry fm :
Ym → Zm for every m ∈ J . Then {Ym}m∈J is a family of expanders if and only if
{Zm}m∈J is.

5. Superapproximation for indefinite Coxeter groups

Since S is assumed to be finite, W is a discrete subgroup of OB(R) (see §3.6).
This implies that if (W,S) is semidefinite (resp. definite), thenW is virtually abelian
(resp. finite) [Bou07, Ch. V.4]. As virtually abelian groups are amenable, there is
no chance to witness superapproximation or expansion phenomena in (W,S) if it
is semidefinite.

The situation is quite different for indefinite Coxeter groups, as attested by the
following theorem of Benoist and de la Harpe.

5.1. Theorem ([Bd04, Théorème]). Let (W,S) be an indefinite irreducible Coxeter
system, and let rad(B) denote the radical of the associated bilinear form B. Then
the Zariski-closure of W in OB is precisely the kernel O1

B of the restriction map
OB → GLrad(B) : g �→ g|rad(B)

. In particular, if B is non-degenerate, then W is
Zariski-dense in OB.

A consequence of Theorem 5.1 is that the connected component O1◦
B of the

Zariski-closure of the indefinite Coxeter group W is perfect. Indeed, if B′ denotes
the bilinear form induced by B on V ′ = V/ rad(B), then O1◦

B
∼= SOB′ �V ′ dim rad(B),

with the latter being a perfect group because SOB′ is simple and V ′ is an irreducible
SOB′-module. This is precisely the ingredient needed for us to apply the following
superapproximation theorem due to Salehi Golsefidy. We will use it to deduce that
congruence quotients of the Cayley graph of an indefinite Coxeter group form a
family of expanders.

Fix non-zero integers N0 and q0. For any integer m coprime to q0, let πm denote
the quotient map GLN0

(Z[1/q0]) → GLN0
(Z/mZ) induced by reduction modulo m.
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5.2. Theorem ([Sal19, Theorem 1]). Let Γ be the group generated by a finite sym-
metric subset S of GLN0

(Z[1/q0]). Suppose that Γ is infinite. Fix M0 ∈ N. Then
the family of Cayley graphs {Cay(πm(Γ), πm(S))}m, as m runs through either

{pn | n ∈ N, p prime, p � q0}
or {m ∈ N | gcd(m, q0) = 1, pM0+1 � m for any prime p},

is a family of expanders if and only if the connected component G◦ of the Zariski-
closure G of Γ in GLN0

is perfect.

In order to apply Theorem 5.2 to an indefinite Coxeter group W , it remains for
us to observe that W can indeed be seen as a subgroup of GLN0

(Z[1/q0]). The
attentive reader may foresee Weil’s trick of restricting scalars. The entries of the
matrix of 2B in the canonical basis of V are algebraic integers, and so there exists a
number field K, with ring of integers OK , over which the algebraic group OB can be
defined in such a way that W ⊂ OB(OK). The restriction of scalars ResK/Q(OB)
is a linear algebraic Q-group, and as such can be embedded over Q in GLN0

for
some N0. If one is careful with the construction of ResK/Q(OB) and the choice of
the embedding in GLN0

, then one can ensure that the image of W lies in GLN0
(Z).

Otherwise, let q0 be a lowest common denominator of the entries of the image of S.
Then S, and hence also W , is a subset of GLN0

(Z[1/q0]). The connected component
of the Zariski-closure of W in GLN0

is the image of ResK/Q(O
1◦
B ), which is perfect

since O1◦
B is perfect.

We also record the following very useful corollary to Theorem 5.2, which is
sufficient to construct expanders from an indefinite Coxeter group.

5.3. Corollary. Let Γ be a linear group (in characteristic 0) generated by a finite
symmetric set S. Suppose that Γ is not virtually solvable. Then there exists a
collection {Nm}m∈I of normal subgroups of Γ whose indices are unbounded, and
for which the Cayley graphs Cay(πm(Γ), πm(S)) form a family of expanders, where
πm denotes the quotient map Γ → Γ/Nm.

Proof. Let F be a field of characteristic 0 such that Γ is a subgroup of GLN (F ),
and let A be the Q-subalgebra of F generated by the entries of the elements of
Γ. By assumption, A is a finitely generated Q-algebra. There exists a morphism
A → Q inducing a map ϕ : GLN (A) → GLN (Q), for which the image ϕ(Γ) of Γ in
GLN (Q) is still not virtually solvable [LM91, Proposition 2.2]. Since Γ is finitely
generated, ϕ(Γ) lies in some number field K. After restricting scalars from K down
to Q if necessary, we may assume that ϕ(Γ) lies in GLN ′(Q).

Let G be the Zariski-closure of ϕ(Γ) in GLN ′ . Let R denote the solvable radical
of G and ψ : G → G/R the quotient map onto the Q-group G/R. By construction,
the connected component H of G/R is a semisimple Q-group. If H were trivial,
then G would be a finite extension of the solvable group R, and hence ϕ(Γ) would
be virtually solvable. We deduce that Γ′ = ψ(ϕ(Γ)) is Zariski-dense in the Q-group
G/R, whose nontrivial connected component is semisimple and hence perfect.

Now embed G/R into GLN ′′ over Q for some N ′′, and apply Theorem 5.2 to
obtain a collection of congruence subgroups {Nm}m∈I of Γ′ whose indices in Γ′ are
unbounded, and for which the Cayley graphs of the quotients Γ′/Nm are expanders.
Then the preimage in Γ of {Nm}m∈I verifies the statement of the corollary. �

We now have all the pieces to prove Theorem 1.1.
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5.4. Proof of Theorem 1.1. Let (W,S), PW,M and X be as in the statement of
the theorem.

Applying Theorem 5.2 and the surrounding discussion to (W,S), we find a collec-
tion of congruence subgroups Nm = kerπm of W (with respect to the restriction of
scalars of the geometric representation), for which {Cay(πm(W ), πm(S))}m forms
a family of expanders, as m runs through

I = {pn | n ∈ N, p ∈ N prime} ∪ {m ∈ N | pM0+1 � m for any prime p ∈ N}.
As shown in §4.4, there are quasi-isometries fm : Cay(πm(W ), πm(S)) → X/Nm

with constants depending only on (W,S). By Corollary 4.10, the graphs {X/Nm}m∈I

form a family of expanders.
We can refine the choice of the subset I ′ in §4.5 as follows. The finite set T

from §4.5 intersects Np nontrivially for only finitely many primes p, and for each of
those, T intersects Npn nontrivially for only finitely many n. It follows that the set
{m ∈ I | T ∩Nm = {1}} is cofinite in I, and in view of §4.5, a fortiori so is the set

I ′ = {m ∈ I | X/Nm has the same regularity as X}.
Altogether, the graphs {X/Nm}m∈I′ are (a0, . . . , an)-regular, and form an infi-

nite family of expanders. This concludes the proof.

5.5. Proof of Corollary 1.2. As already mentioned in §1, to deduce Corollary
1.2 from Theorem 1.1, it suffices to first apply Lemma 3.3 to the universal polytope
of the string Coxeter system, which is a regular polytope.

5.6. Remark. It should be stressed that quotients of indefinite Coxeter groups give
rise to both expanders and non-expanders. Most families of subgroups do not
give expanders; only careful choice, as with the congruence subgroups used in the
proof of Theorem 1.1, leads to expanders. More precisely, Coxeter groups which
are lattices in On,1 for some n ∈ N (for example H5, or any of the groups from
Table 7.2) have finite-index subgroups which map onto a nonabelian free group
(see [Lub96, Corollary 3.6]). Noskov and Vinberg [NV02] showed that this even
holds for all finitely generated subgroups of general Coxeter groups, provided they
are not virtually abelian (in particular, this holds for indefinite Coxeter groups).
Such finite-index subgroups have infinite residually finite amenable quotients, which
lead to non-expanding finite quotients.

6. High-dimensional expanders

As mentioned in §2.2, it is natural to think about a (a0, . . . , an−1)-regular graph
X as an n-dimensional simplicial complex, more precisely as the n-skeleton X(n)

of the clique complex Xcl of X, of which X is the 1-skeleton. When X is an ex-
pander graph, it is natural to wonder whether X(n) has high-dimensional expansion
properties.

The notion and study of high-dimensional expanders (HDX) has been very pop-
ular in recent years with many different definitions which are not equivalent to each
other in general (see [Lub18] and the references therein). There is a priori no reason
to believe that if X is an expander graph, then X(n) is an HDX in any of the defini-
tions. Nevertheless, we observe that Proposition 4.8 yields some “high-dimensional
information”. In [KM17] and [DK17], a systematic study of i-walks on a simpli-
cial complex Y was initiated. Here an i-walk means a walk on the i-cells, where
i-cells are adjacent if they are contained in a common (i + 1)-cell. The following
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basic question was asked in [KM17]: “Are there bounded degree high-dimensional
simplicial complexes in which all the high order random walks converge rapidly to
their stationary distribution?” Proposition 4.8 gives us a quick answer to this.

6.1. Corollary. Let Y be a bounded-degree connected simplicial complex of dimen-
sion d. Let Y (i) be the graph whose vertices are the i-cells of Y and in which two
i-cells are adjacent if they are contained in a common (i+ 1)-cell. Then for every

0 ≤ i < d such that Y (i) is connected, Y (i) is an expander graph if and only if Y (0)
(that is, the 1-skeleton of Y ) is an expander graph.

Proof. When Y is of bounded degree and Y (i) is connected, Y (i) is quasi-isometric

to Y (0) (with constants depending only on the degree bound), and the statement
follows from Proposition 4.8. �

Recall that the (lazy) random walk on an expander graph converges rapidly
to the stationary distribution. So formally speaking, Corollary 6.1 answers the
above question, since there are various ways to construct complexes Y satisfying its
hypotheses (and indeed for some of them [KM17] proved this). But experience with
HDX shows that one needs quantitative results (of the type given in [KM17,DK17])
for concrete applications.

Finally, let us mention another interesting remark related to high-dimensional
expanders. As was explained in §5, our expander graphs are obtained by applying
superapproximation to normal congruence subgroups of a Coxeter group W . The
Coxeter groups studied here are all known to have finite-index subgroups which map
onto non-abelian free groups [NV02]. This implies that at the same time, we could
choose suitable (non congruence) normal subgroups which give rise to HR-graphs
that have exactly the same local structure but are not expanders.

This is of interest in light of Garland theory [Gar73]. Garland theory shows
that the 1-skeleton of simplicial complexes are expanders when the links are “suf-
ficiently good” expanders. Our examples show that in fact the links need to be
strong enough expanders in order to deduce global expansion. Hence the popular
statement saying that Garland theory implies that expansion of high-dimensional
simplicial complexes is a local property should be formulated in a careful and quan-
titative way.

7. Highly regular honeycombs in hyperbolic space

In this section, we illustrate how Theorem 1.1 can be used to produce examples of
highly regular expander graphs. In particular, these examples will prove Theorem
1.3.

As we have seen in §4 and §5, in order to obtain expander graphs from the 1-
skeleton of a Wythoffian polytope PW,M with finite vertex links, the Coxeter system
(W,S) should be indefinite. In particular, this happens when PW,M is a tessellation
of hyperbolic space. At the same time, to obtain a graph of regularity level n, it
would suffice that all faces of PW,M of rank n+1 are simplicial, and the 1-skeleton
of the links of faces of rank ≤ n are transitive graphs. When PW,M is a regular
polytope, it suffices that a single face of rank n + 1 is simplicial (as the second
condition is superseded by Lemma 3.3).

7.1. Regular tessellations of hyperbolic space. The hyperbolic plane can be
tessellated by regular triangles of angles 2π/a, for every integer a > 6. The stabiliser
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in PGL2(R) of such a tiling Ta is a cocompact lattice, the so-called (2, 3, a)-triangle
group, here denoted by Da. The quotients of Da (or equivalently, of Ta) give rise to
infinitely many (a, 2)-connected regular graphs, as pointed out in [CLP20, Example
1.2(5) & Section 6]. But Corollary 1.2 says further that given a > 6, infinitely
many of these (a, 2)-regular graphs (namely the ones obtained from congruence
subgroups) form a family of expanders. (It is worth pointing out that for only
finitely many values of a is the triangle group Da an arithmetic lattice; see [Tak77].
So the meaning of ‘congruence subgroups’ is as given by the proof of the theorem.)
Moreover, for each a > 6, the group Da has infinitely many finite index subgroups
that are the fundamental group of a Riemann surface of genus greater than 1, and
hence map onto a nonabelian free group, and therefore has infinitely many quotients
that do not yield expanders (cf. Remark 5.6).

Sadly, tessellations of hyperbolic space by regular (possibly ideal) polytopes are
scarce in dimensions 3 and above. In contrast with the hyperbolic plane, there are
only finitely many regular hyperbolic tessellations in dimensions 3, 4 and 5, and
none in dimensions 6 and above. This fact was already known to Schlegel [Sch83],
who initiated their study. The full list can be found in [Cox56]. A quick look
through the tables suggests the following candidates, the regularity of which can
be computed using Lemma 3.3.

Table 7.2. Some regular hyperbolic tessellations

Regular polytope P Schläfli symbol Regularity of X
Icosahedral honeycomb {3, 5, 3} (20, 3, 0)
Order-5 4-simplicial honeycomb {3, 3, 3, 5} (120, 12, 5, 2, 0)
Pentagrammic-order hexacosichoric honeycomb {3, 3, 5, 5/2} (120, 12, 5, 0)
Order-5 icosahedral hecatonicosachoric honeycomb {3, 5, 5/2, 5} (120, 12, 0)
Order-3 5-orthoplicial honeycomb {3, 3, 3, 4, 3} (ℵ0, 24, 8, 3, 0)
Order-3 4-orthoplicial honeycomb honeycomb {3, 3, 4, 3, 3} (ℵ0, 16, 4, 0)
Order-3 icositetrachoric honeycomb honeycomb {3, 4, 3, 3, 3} (32, 5, 0)

7.3. Remark. The third example is a faceting of the second one. Hence there is
essentially one example of hyperbolic tessellation whose 1-skeleton is (a0, a1, a2)-
regular with a0 ∈ N and a2 �= 0, namely the one with Schläfli symbol {3, 3, 3, 5}
and Coxeter diagram 5 .

In fact, even among arbitrary indefinite string Coxeter systems, this is the only
example which can yield an infinite family of (a0, a1, a2)-regular quotient graphs
(with a0 ∈ N and a2 �= 0). Indeed to achieve this, the diagram of the Coxeter
system (W,S) should start with at least two consecutive edges labelled 3, while
the stabiliser W0 of a given vertex of PW (whose Coxeter diagram is obtained by
removing the 0th vertex and its edge from the diagram of (W,S)) should be finite
(see Remark 3.5 and §3.7). In other words, the Coxeter diagram of (W,S) should
be obtained by adding an edge labelled 3 to the string diagram of a finite Coxeter
group W0 which already starts with at least one edge labelled 3, in such a way that
the resulting group is infinite. The only possible candidates for the finite group

are 4 (F4) and 5 (H4). Unfortunately, extending the former diagram
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yields 4 (F̃4), whose Coxeter system is semidefinite: it is the affine Weyl

group of type F̃4.
Aside from the triangular tilings of the hyperbolic plane already mentioned, the

only regular hyperbolic tessellations that yield (a0, a1)-regular graphs (with a0 ∈ N,
a1 �= 0) in this way are included in Table 7.2.

7.4. The order-5 4-simplex honeycomb. As an illustration, we work out the
most noteworthy regular example. In this subsection, let thus P denote the order-5
4-simplex honeycomb, the automorphism group of which is the Coxeter group W

with diagram 5 , known as H5. This example already answers the question
asked in [CLP20] positively.

Let ϕ = 1+
√
5

2 ∈ R and let K = Q(ϕ). The bilinear form B on R5 associated
with W has matrix

1

2

⎛
⎝

2 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −ϕ
0 0 0 −ϕ 2

⎞
⎠

with respect to the canonical basis {e0, . . . , e4}. It is an easy exercise to see that
B is equivalent over K to the diagonal form B′ = 〈1, 1, 1, 1,−ϕ〉. It follows that
OB

∼= OB′ as algebraic K-groups, and W has signature (4, 1).
The 2-sheeted hyperbola {v ∈ R5 | B(v, v) = −1} is preserved by OB, and each

of the two sheets H and H− is preserved by the group W . The space H (or H− for
that matter) is the Minkowski model for hyperbolic 4-space; its isometry group is
O+

B(R) = {g ∈ OB(R) | gH = H} ∼−→ POB(R).

Next, let OB(OK), O+
B(OK) and SOB(OK) respectively denote the matrices in

OB(K), O+
B(K) and SOB(K), with entries in the ring of integers OK of K. By

construction of the geometric representation (see §3.6), the images of the genera-
tors {s0, . . . , s4} of W lie in O+

B(OK). Each generator acts on H as a hyperbolic
reflection. The hyperplane arrangement generated by these reflections tessellates
H by compact 4-simplices, and this tessellation is a geometric representation of the
Coxeter complex of W .

The tiles of the order-5 4-simplex honeycomb P can be recovered by regrouping
the chambers of this complex around each vertex of type 4. Alternatively, P can be
obtained by playing kaleidoscope with a point placed on the hyperplanes associated
with s1, . . . , s4 but not s0. The link L of a vertex of P is a hexacosichoron (600-cell),
which has 120 vertices, 720 edges and 1200 faces. At each vertex of L, 12 edges
meet, with 5 faces around each of those edges and 2 cells containing each such face.
The link of an edge of P is an icosahedron.

It follows from these geometric observations that W is a cocompact lattice in
OB(R). In this case, the conclusion of Theorem 5.1 could also be obtained directly
by applying Borel’s density theorem [Bor60]: W is Zariski-dense in OB. It also
follows that W has finite index in OB(OK). Indeed, by a classical theorem of Borel
and Harish-Chandra, OB(OK) is also a lattice in the group OB(R). (Alternatively,
since OB(OK) is a discrete subgroup of OB(R) containing the lattice W , it must
be a lattice.)
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One can now apply Corollary 1.2 (see also §5.4) to construct the finite
(120, 12, 5, 2)-regular congruence quotients of the 1-skeleton X of P, which form
an infinite family of expanders.

7.5. Remark. In the example considered in §7.4 (but also for other hyperbolic
tilings), the subgroups Nm = W∩kerπm can be described explicitly via the geomet-
ric realisation. They act on H, and if Nm is chosen appropriately (namely as in §4.5,
with the additional requirement of being torsion-free), then the quotient H/Nm is a
compact hyperbolic 4-manifold which admits a triangulation (descending from the
honeycomb) whose 1-skeleton is precisely the graph X/Nm.

Of course, the manifolds H/Nm all cover the orbifold H/W . It is possible that
in fact all but finitely many cover the manifold H/Σ from [CM05, §5], which to this
day achieves the smallest known volume among compact hyperbolic 4-manifolds.

7.6. Wythoffian tessellations of hyperbolic space. In addition to the regular
ones, one can construct examples using more general Wythoffian polytopes (see
§3.7). A strategy to obtain Wythoffian polytopes PW,M with a 1-skeleton X of
regularity level n+ 1, to which one can then apply Theorem 1.1, goes as follows.

First, to ensure that all (n+1)-faces are simplices, the set M should consist of a
single vertex s0 of the Coxeter diagram of (W,S), and any connected subdiagram
of size n containing s0 should be a path starting at s0 containing only unlabelled
edges. As a consequence, s0 is a leaf of the Coxeter diagram, and in the diagram
there is a unique path of length n− 1 starting at s0.

When all (n + 1)-faces of PW,M are simplices, the (n + 1)-skeleta of PW,M and
of Xcl coincide. In particular, if X happens to have regularity level at least i + 1,
then its ith regularity degree ai equals the number of (i + 1)-faces containing any
i-face, or in other words, equals the size of the link of any i-face in PW,M (i ≤ n).

Now to check that the 1-skeleton X of such a polytope PW,M indeed has regu-
larity level n + 1, we argue as follows. Since s0 lies at one end of a unique path
of length n − 1 in the diagram, one sees inductively that for −1 ≤ i ≤ n − 1, the
link of an i-face is again a Wythoffian polytope, hence is vertex-transitive. This
implies that the sphere SX(C) of radius 1 around any clique C of size i+1 in X is
a vertex-transitive graph. In particular, it is ai+1-regular, with ai+1 again counting
the number of (i+2)-faces containing a given (i+1)-face. This analysis also shows
that the link of an i-face remains connected as long as i ≤ n − 1, so that X is
(a0, . . . , an−1)-connected regular.

Second, the vertex links of PW,M are finite precisely when the subgroup W0 =
〈S \M〉 of W is finite, or in other words, when the Coxeter diagram obtained by
removing M and the edges containing it is that of a definite Coxeter system.

It remains to determine when the system (W,S) is indefinite. Since (W0, S \M)
is positive definite, this is the case precisely when the discriminant of the bilinear
form B of (W,S) is negative (see §3.6).

In Table 7.7, we record some examples of highly regular Wythoffian polytopes
obtained via this strategy. In each case, the regularity degrees are computed using
the sizes of the finite polytopes which appear as links of (simplicial) faces. Because
at the last step the links split into a product, the connected regularity level of each
example is one less than the regularity level indicated in the table. The vertex links
are easily seen to be finite, and the sign of the discriminant of the bilinear form B
is checked by hand (or by computer).
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Table 7.7. Some Wythoffian hyperbolic tessellations

Coxeter group W Adorned diagram of PW,M Symbol Regularity of X

T7 232 (576, 35, 12, 6)

Extended T7 242 (17280, 56, 15, 6)

T8 341 (2160, 64, 21, 10, 5)

Em (m ≥ 10) 2(m−4)1 (2m−2, (m−1)(m−2)
2 , 2(m− 3),m− 3)

The most regular example in Table 7.7 is the honeycomb 341 in hyperbolic 8-
space, whose 1-skeleton is a (2160, 64, 21, 10, 5)-regular and (2160, 64, 21, 10)-con-
nected regular graph. Its links are successively the 241 polytope (with symmetry
group the Coxeter group E8), the 7-demicube, the rectified 6-simplex, the 5-cell
prism, and the disjoint union of a vertex and a 3-simplex.

All the examples in Table 7.7 have an infinite facet. The first, the third, and
the last ones for m = 10 have facets of finite hyperbolic volume, and hence their
automorphism groups are noncocompact lattices in the isometry group of their
respective hyperbolic space. These examples were discovered by Coxeter [Cox48],
forerun by Gosset’s discovery [Gos00] of the so-called uniform k21 polytopes and by
Elte’s subsequent work [Elt12].

7.8. Remark. Along the same lines as Remark 7.3 and by going through the list of
definite Coxeter diagrams carefully, one can see that the only polytopes of regularity
level 4 or more that can be obtained via this method are those in Table 7.7 and the
honeycomb from §7.4.

We discuss next an example where arbitrarily high regularity is achieved, but at
the cost of connectivity at the level of triangle links.

7.9. An example with arbitrarily high regularity. Even though in §3.7 we
required that all low-dimensional faces were simplices, this is not necessary in gen-
eral. It is however obviously necessary that some faces are simplicial (otherwise the
1-skeleton contains no cliques).

For any m ≥ 5, let Pm be the Wythoffian polytope associated with the diagram
m− 1 m− 1

and let Xm be its 1-skeleton. All 3-faces of this polytope are
tetrahedral, but some 4-faces are 4-demicubes. Its vertex links are (m−1)-rectified

(2m−1)-simplices, with
(
2m
m

)
vertices and diagram

m− 1 m− 1
, the vertex links

of which are the Cartesian product of two (m−1)-simplices. By §8.2, the 1-skeleton
of the Cartesian product of two (m−1)-simplices is a (2(m−1),m−2,m−3 . . . , 1)-
regular graph on m2 vertices. Since all the 3-faces of Pm are simplicial, the 3-skeleta
of Pm and Xcl

m coincide, hence Xm is a (
(
2m
m

)
,m2, 2(m − 1),m − 2,m − 3, . . . , 1)-

regular graph.
In this example, connectivity breaks down quickly since the link of an edge is a

product of two polytopes (as the diagram becomes disconnected). The 1-skeleton
of this link is then a Cartesian product of graphs, in which the sphere around any
vertex is always disconnected. Thus Xm has connected regularity level 2.

Note that the 1-skeleton of the (m − 1)-rectified (2m − 1)-simplex is just the
Johnson graph J(2m,m). Indeed, vertices of the (m−1)-rectified (2m−1)-simplex
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are placed in the center of the (m−1)-faces of a (2m−1)-simplex, hence correspond
to subsets of {1, . . . , 2m} of size m, with two vertices connected by an edge when
the two corresponding subsets have m− 1 elements in common.

One can read from the diagram or deduce from the above combinatorial descrip-
tion that as i ranges from 1 to m+1, the sphere around an i-clique in the 1-skeleton
of Pm is successively: the Johnson graph J(2m,m), the Cartesian product of two
complete graphs Km on m vertices, the disjoint union of two Km−1, then Km−2,
Km−3, and so on. In particular the links in Xcl (!) of 2-simplices are disconnected,
while for −1 ≤ i ≤ m, i �= 2, those of i-simplices are connected.

8. Degree parameters of highly regular (expander) graphs

In this section we investigate the existence (or non-existence) of highly regular
connected graphs with given degrees (a0, . . . , an−1), and we present some sugges-
tions for further research.

To facilitate the discussion we define the following sets of n-tuples of positive
integers:

• HR(n) = {a = (a0, . . . , an−1) ∈ Nn s.t. there exists a connected a-regular graph },
• HR∞(n) = {a = (a0, . . . , an−1) ∈ Nn s.t. there exist up to isomorphism infinitely
many connected a-regular graphs },

• HRexp(n) = {a = (a0, . . . , an−1) ∈ Nn s.t. there exists an infinite family of
a-regular expander graphs }.
We also introduce the sets corresponding to the additional requirement of con-

nectivity for the links of higher-dimensional cells.

• HRC(n) = {a = (a0, . . . , an−1) ∈ Nn s.t. there exists an a-connected regular
graph },

• HRC∞(n) = {a = (a0, . . . , an−1) ∈ Nn s.t. there exist up to isomorphism infin-
itely many a-connected regular graphs },

• HRCexp(n) = {a = (a0, . . . , an−1) ∈ Nn s.t. there exists an infinite family of
a-connected regular expander graphs }.

8.1. Remark. Note that HR(1) = HRC(1) = N (viewing a single vertex as a 0-
regular graph), HR∞(1) = HRC∞(1) = N \ {0, 1} since every connected finite
2-regular graph is a cycle, and HRexp(1) = HRCexp(1) = N \ {0, 1, 2} since for
k ≥ 3 there exists a family of k-regular expander graphs by a result of Pinsker
[Pin73].

8.2. Combining highly regular expanders. Here we recall two constructions
which allow us to combine existing degree parameters in order to create “larger”
ones. These constructions together with Lemma 8.4 show that a set of the form
HR(n), HR∞(n) or HRexp(n) is infinite whenever it is non-empty.

Let Gi be an (ai0, a
i
1, · · · , ain)-regular graph with vertex set Vi, for i = 1, 2.

(1) Tensor product construction (see also [CLP20]): The graph tensor prod-
uct of G1 and G2 [RW12], denoted by G1×G2, has vertex set V1×V2, and adjacency
is defined by (v1, v2) ∼ (v′1, v

′
2) if and only if v1 ∼ v′1 and v2 ∼ v′2. It is straightfor-

ward to show that G1 ×G2 is (a10a
2
0, a

1
1a

2
1, · · · , a1na2n)-regular.

(2) Cartesian product construction: The Cartesian product of G1 and G2

(see e.g. [Sab60]), denoted by G1�G2, has vertex set V1 × V2, and adjacency is
defined by (v1, v2) ∼ (v′1, v

′
2) if and only if either v1 = v′1 and v2 ∼ v′2, or v1 ∼ v′1
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and v2 = v′2. It is easy to check that if a1k = a2k =: ak for k ∈ {1, . . . , n}, then
G1�G2 is (a10 + a20, a1, · · · , an)-regular.

8.3. Remark. The Cheeger-Buser inequalities (see [Dod84,AM85]) show that a fam-
ily of connected a-regular graphs (Gi)i∈I is a family of expanders if and only if their
adjacency matrices (Ai)i∈I possess a uniform spectral gap s = a − λ2,i > 0. Here
λ2,i denotes the second largest eigenvalue of Ai.

8.4. Lemma. If G1 = (G1
i )i∈I and G2 = (G2

i )i∈I form a family of expander graphs,
then so do G1 × G2 = (G1

i ×G2
i )i∈I and G1�G2 = (G1

i�G2
i )i∈I .

Proof. We use Remark 8.3. Let G1 and G2 be graphs with adjacency matrices A1

and A2 respectively. The eigenvalues of the adjacency matrix A1⊗A2 of the tensor
product G1×G2 are the pairwise products of the eigenvalues of A1 and A2 [RW12].
The adjacency matrix A1�2 of G1�G2 is the Kronecker sum of A1 and A2, namely
A1�2 = A1 ⊗ In2

+ In1
⊗ A2. The eigenvalues of A1�2 are all of the form λ1 + λ2

where λi is an eigenvalue of Ai for i = 1, 2 (see [HJ91, Theorem 4.4.5]). Hence if
the families G1 and G2 have uniform spectral gap, then so do G1 × G2 and G1�G2,
and the lemma is proved. �

We now discuss the behavior of a-connected regularity under the above graph
products. Note that the vertex links of a Cartesian product are never connected,
so we consider only tensor products.

8.5. Lemma. Let n ≥ 3. If G1 and G2 are connected regular of level n, then
G1 ×G2 is connected regular of level n− 2.

Proof. Note that the j-links of the tensor product of two graphs are the tensor
products of the j-links of those graphs. By a result of Weichsel [Wei62], the tensor
product of two connected graphs is connected if and only if at least one of them
contains an odd cycle. So for given j, as long as (at least one of the) j-links contain
a triangle, the j-link of the tensor product will be connected. �

8.6. Restrictions on the regularity degrees. It would be interesting to de-
scribe the sets HR(n), HR∞(n) and HRexp(n) precisely, as well as their connected
counterparts HRC(n), HRC∞(n) and HRCexp(n).

Apart from the obvious bounds ai > ai+1 and the requirement that the product
of any k consecutive ai’s must be divisible by k!, we do not know any necessary
condition for a tuple (a0, . . . , an−1) to be contained in one of these sets. For one
thing, the constructions above show that one cannot bound one of the ai in terms
of its successors.

Zelinka [Zel00] showed by ad hoc methods that there exist no (7, 4)-regular
graphs. Note also that strongly regular graphs form a subclass of (a, b)-regular
graphs, and it is a well-known open problem to determine the allowable parameters
for strongly regular graphs. For example, if G is a graph in which every edge is in
a unique triangle, and every non-edge is a diagonal of a unique 4-cycle, then it is a
relatively easy exercise to show that |G| ∈ {3, 9, 99, 243, 6273, 494019}. Moreover,
examples of such graphs for |G| = 3, 9 and 243 are given by a triangle, a toroidal 3-
by-3 grid and a very interesting example related to the ternary Golay code [BLS73].
But is there an example with |G| = 99 ? Conway offered US$1000 for an answer
to this question, which is now known as ‘Conway’s 99-graph problem’ (although in
fact its history goes back to Biggs in 1969).
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8.7. Graphs of arbitrarily high connected regularity level. Here we provide
two group-theoretic constructions which show that HRC(n) is infinite for all n. The
connected regularity in both constructions follows from Lemma 3.3.

Example 1. The rank n Coxeter group [3, 3, .., 3, 2] is finite, of order 2n!, and
isomorphic to the direct product Sn × C2. Now let x1, . . . xn be the canonical
involutory generators of the rank n Coxeter group G = [3, 3, .., 3,∞], and let U be
the quotient of G obtained by adjoining the single extra relation (xn−2xn−1xn)

6 =
1. The latter relation is equivalent to [w,wxn−2 ] = 1, where w = (xn−1xn)

2, because
if (a, b, c) = (xn−2, xn−1, xn) then

[(bc)2, a(bc)2a] = cbc(bca)4bcbca = cbc(bca)6(acb)2bcbca

= cbc(bca)6cababac = cbc(bca)6cbc.

Now let w2 = wxn−2 , w3 = wxn−2xn−3 , and so on, up to wn−1 = wxn−2xn−3...x1 .
Then it is an easy exercise using the Coxeter group relations to show that the effect
of conjugation of these wj by the generators x1, . . . xn of U is as follows:

xi interchanges wn−1−i with wn−i, and centralises all other wj , for 1 ≤ i ≤
n− 2;
xn−1 inverts w1, and interchanges wj with w−1

1 wj , for 2 ≤ j ≤ n− 1; and
xn inverts wj for all j.

Hence the elements wj generate a normal subgroup N of U , with quotient U/N ∼=
Sn × C2. Also [w1, w2] = [w,wxn−2 ] = 1, and repeated conjugation of this by the
generators xi shows that every two of the wi commute, and therefore N is abelian.

Moreover, the effect of conjugation of the wj by the subgroup of U generated by
x1, . . . xn−1 is equivalent to the action of Sn on its (n−1)-dimensional augmentation
module (consisting of all n-vectors (v1, v2, . . . , vn) with vector-sum 0), and as this
module is irreducible over R (and hence over Q), it follows that N is free abelian
of rank n− 1.

Next, for any positive integer k, factor out the characteristic subgroup Nk of N
generated by the k-th powers of w = (xn−1xn)

2 and their conjugates. Then the
resulting finite quotient U/Nk of G has order 2(n!)kn−1, and is the automorphism
group of a regular polytope of rank n with type [3, 3, .., 3, 2k], and gives rise to a
highly regular graph of level n−1 with parameters (nk, (n−1)k, (n−2)k, . . . , 3k, 2k).

Example 2. Conder, Hubard and O’Reilly-Regueiro [CHOR20] recently devised
a construction in order to produce the first concrete examples of chiral (but other-
wise maximally symmetric) polytopes of arbitrarily large rank, showing also that
for every integer n ≥ 5, all but finitely many of the alternating groups Ak and sym-
metric groups Sk are the automorphism groups of regular polytopes of rank n and
type [3, 3, .., 3,m] for some m (dependent on k and n), with simplicial facets. (This
can be achieved by constructing suitable homomorphisms from the rank n Coxeter
group [3, 3, . . . , 3,∞] onto An and Sn for all sufficiently large n.) The parameters
(a0, . . . , an−2) for the resulting highly regular graphs, however, involve very large
integers and reveal no obvious recurring patterns.

8.8. Related work by Friedgut and Iluz. During the write-up of this paper it
was brought to the authors’ attention that Friedgut and Iluz, in work in preparation,
have obtained related results. They observed that the Coxeter group H5 leads to
the construction of (120, 12, 5, 2)-regular graphs, and Friedgut had presented this
work at Oberwolfach in April 2019, but with no mention of the expansion of those
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graphs. They also informed us they have a method to show that HRC∞(n) and
even HRCexp(n) are infinite (compare with Theorem 1.3(c)).

8.9. Open problems. We conclude with the following natural problems:

Problem A. Consider the following diagram of inclusions:

HRCexp(n) HRC∞(n) HRC(n)

HRexp(n) HR∞(n) HR(n)

Are any of these inclusions strict for n > 1? (See Remark 8.1 for the case n = 1.)

Problem B. For n > 1 describe the above six sets as subsets of Nn.

9. Dedication to John Conway and Ernest Vinberg

This paper is dedicated to John Conway and Ernest Vinberg, for their phenom-
enal insights and outstanding contributions in the fields of algebra, combinatorics
and geometry. Both of them died in 2020, casualties of the Covid-19 virus. Their
work has been inspirational to us and to hundreds of other mathematicians world-
wide.

John Conway is perhaps best known for his contributions to combinatorial game
theory, especially the ‘Game of Life’, and for the discovery of three of the sporadic
finite simple groups. But he also made fundamental discoveries across a very wide
range of other topics, including knots, lattices, numbers, polyhedra and tilings.
Ernest Vinberg is best known for his work on discrete subgroups of Lie groups and
representation theory. He introduced Vinberg’s algorithm for finding a fundamental
domain of a hyperbolic reflection group, and he developed some beautiful theory of
the arithmetic nature of co-finite hyperbolic Coxeter groups and the combinatorial-
metric structure of their Coxeter polyhedra in terms of the Gram matrix. (Also
incidentally, Conway was a great admirer of Coxeter, whose groups play a key
role in this paper, and he used Vinberg’s algorithm to describe the automorphism
group of the 26-dimensional even unimodular Lorentzian lattice II25,1 in terms of
the Leech lattice.)

Conway had a life-long interest in highly symmetric objects, and Vinberg made
great contributions to the theory and applications of Coxeter groups. This paper
which combines these two threads of their research serves as a tribute to them both.
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